Homework 7 Solutions

Math 131B-2

- For each of these, we apply the Root Test and then examine the endpoints of the interval individually. The intervals of convergence are $[4.5,5.5],(0,2),(-6,4]$, and $\{3\}$.
- Let $s_{n}(x)=1+x+x^{2}+\cdots+x^{n}$. Then on $(-1,1), s_{n}$ is bounded, since $\left|s_{n}(x)\right|<n+1$. We know the s_{n} converge pointwise to $f(x)=\sum_{n=1}^{\infty} x^{n}=\frac{1}{1-x}$. If the convergence were uniform on $(-1,1)$, then we would expect the limit function $f(x)$ to be bounded on $(-1,1)$ as well, but it clearly isn't.
- (9.33) (a) Consider the first derivative $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x}$. This limit exists if and only if the corresponding limits from the right and left exist. Now the limit from the left is $\lim _{x \rightarrow 0^{-}} \frac{0}{x}=0$ and the limit from the right is

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{e^{-\frac{1}{x^{2}}}}{x} & =\lim _{t \rightarrow \infty} \frac{t}{e^{t^{2}}} \\
& =\lim _{t \rightarrow \infty} \frac{1}{2 t e^{t^{2}}} \\
& =0
\end{aligned}
$$

Here in the first step we have used the replacement $t=\frac{1}{x}$, and in the second we have used L'Hospital's Rule, since $t, e^{t^{2}} \rightarrow \infty$ as $t \rightarrow \infty$. Therefore $f^{\prime}(0)=0$, and in general $f^{\prime}(x)=\frac{-2}{x^{3}} e^{-\frac{1}{x^{2}}}$ for $x>0$ and $f^{\prime}(x)=0$ for $x \leq 0$.

Subsequent derivatives are similar: for every n, the function $\left.f^{(} n\right)(x)$ is 0 when $x \leq 0$ and a sum of terms of the form $\frac{c e^{-\frac{1}{x^{2}}}}{x^{k}}$ for some k when $x>0$, so an argument similar to the one above, with repeated applications of L'Hospital's Rule, shows that $f^{(n+1)}(0)=0$.
(b) By part (a), the Taylor series of f is identically 0 . This certainly converges, but since $f(x)>0$ for $x>0$, there is no interval on which the Taylor series represents f.

- (9.36) Since all a_{n} are nonnegative, $\sum a_{n}$ must diverge to ∞. Let $M>0$. Then there is some N such that for $n \geq N$, the partial sum $\sum_{n=0} N a_{n}>2 M$. Moreover, there is some δ such that $x \in(1-\delta, 1)$ implies that $x^{N}>\frac{1}{2}$. Then for all $x \in(1-\delta, 1)$, we have $\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0} N a_{n} x^{n}+\sum_{n=N+1}^{\infty} a_{n} x^{n} \geq \sum_{n=0}^{N} a_{n} x^{n} \geq \sum_{n=0}^{N} a_{n} \cdot \frac{1}{2} \geq M$. So $\lim _{x \rightarrow 1^{-}} a_{n} x^{n}=\infty$.
- (9.37) By 9.36 , if $\sum a_{n}$ were to diverge, then $\sum a_{n} x^{n}$ would go to infinity as $x \rightarrow 1^{-}$. As this is not the case, we must have $\sum a_{n}$ convergent. So by Abel's theorem, since $\sum a_{n}$ exists, we must have $\sum a_{n}=\lim _{x \rightarrow 1^{-}} \sum a_{n} x^{n}=A$.
- (9.21) When $x \neq 1$, notice that the series is the integral of $\sum_{n=0}^{\infty} x^{2 n}-\frac{1}{2} \sum_{n=0}^{\infty} x^{n}$, which converges to $\frac{1}{1-x^{2}}-\frac{1}{2(1-x)}=\frac{1}{2(1+x)}$ on $(-1,1)$. Ergo the original series converges to $\frac{1}{2} \ln (1+x)$ on $[0,1)$. When $x=1$, the series is $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$ the alternating harmonic series, which converges to $\ln (2)$, not $\frac{1}{2} \ln (2)$. Therefore the series converges pointwise, but the limit cannot be continuous at $x=1$, and therefore we conclude that the convergence is not uniform. Why is this not a contradiction to Abel's Theorem? Because the series is not actually a power series as written. We would need to rearrange the terms of the series to have a power series $\sum c_{n} x^{n}$, and in doing so we would change the conditional convergence at the endpoint.
- Recall that $B(M \rightarrow S)$ (or any of the other notations mentioned in class) is the set of bounded functions $f: M \rightarrow s$ and $C(M \rightarrow S) \subset B(M \rightarrow S)$ is the subspace consisting of bounded continuous functions.
- We check the axioms of a metric space. First, if $f: M \rightarrow S$, notice that $d_{\infty}(f, f)=$ $\sup _{x \in M} d_{S}(f(x), f(x))=0$. If $f, g: M \rightarrow S$ such that $f \neq g$, there must be some $x_{0} \in M$ such that $f\left(x_{0}\right) \neq g\left(x_{0}\right)$, ergo $d_{\infty}(f, g)=\sup _{x \in M} d_{S}(f(x), g(x)) \geq$ $d_{S}\left(f\left(x_{0}\right), g\left(x_{0}\right)\right)>0$. Second, $d_{\infty}(f, g)=d_{\infty}(g, f)$ because d_{S} is symmetric.
The interesting axiom is the triangle inequality. Let $f, g, h: M \rightarrow S$ be bounded, and let $a=d_{\infty}(f, g)=\sup _{x \in M} d_{S}(f(x), g(x))$. Then given $\epsilon>0$, there is some $x_{0} \in S$ such that $d_{S}\left(f\left(x_{0}\right), g\left(x_{0}\right)\right)>a-\epsilon$. Therefore

$$
\begin{aligned}
a-\epsilon & <d_{S}\left(f\left(x_{0}\right), g\left(x_{0}\right)\right. \\
& \leq d_{S}\left(f\left(x_{0}\right), h\left(x_{0}\right)\right)+d_{S}\left(h\left(x_{0}\right), g\left(x_{0}\right)\right) \\
& \leq \sup _{x \in M} d_{S}(f(x), h(x))+\sup _{x \in M} d_{S}((h(x), g(x)) \\
& =d_{\infty}(f, h)+d_{\infty}(h, g)
\end{aligned}
$$

Ergo $d_{\infty}(f, g)-\epsilon<d_{\infty}(f, h)+d_{\infty}(h, g)$ for all $\epsilon>0$. This implies that in fact $d_{\infty}(f, g)-\epsilon \leq d_{\infty}(f, h)+d_{\infty}(h, g)$.

- Let $M=[0,1]$ and $S=\mathbb{R}$. Then if $f(x)=0, g(x)=M$ for $M>0, d_{\infty}(f, g)=M$. Therefore $C(M \rightarrow S)$ admits arbitrarily large distances and is not bounded. Since all compact sets are bounded, $C(M \rightarrow S)$ is not compact.
- Let $M=\{0\}$ and $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Let $f_{n}(0)=\frac{1}{n}$, which is trivially bounded and continuous. Then $d_{\infty}\left(f_{n}, f_{m}\right)=\left|\frac{1}{n}-\frac{1}{m}\right|$, so the sequence $\left\{f_{n}\right\}$ is Cauchy. However, it does not converge to any $f: M \rightarrow S$.
- Double sums (a) Recall that a series of nonnegative terms b_{i} either converges or diverges to ∞, and in either case the expression $\sum b_{i}$ makes sense. Similarly, $\sum_{i} \sum_{j} a_{i j}$ either converges or diverges to ∞ if $a_{i j} \geq 0$. If $\sum_{i} \sum_{j} a_{i j}$ converges, then since $\left|a_{i j}\right|=a_{i} j$, by the theorem proved in class, $\sum_{i} \sum_{j} a_{i j}=\sum_{j} \sum_{i} a_{i j}$. However, the opposite direction is also true, so if either of $\sum_{i} \sum_{j} a_{i j}$ or $\sum_{j} \sum_{i} a_{i j}$ is finite they are equal, and otherwise they are both $+\infty$.
(b) If we switch the order of summation, we see that

$$
\begin{aligned}
\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{1}{(i+1)!}\left(\frac{i}{i+1}\right)^{j} & =\sum_{i=0}^{\infty} \frac{1}{(i+1)!}(i+1) \\
& =\sum_{i=0}^{\infty} \frac{1}{i!} \\
& =e
\end{aligned}
$$

. By part (a), this is also $\sum_{j=0}^{\infty} \sum_{i=0}^{\infty} a_{i j}$.

- Approximating integrals (a) $\int_{0}^{1} \cos \left(x^{2}\right)=\int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{2}\right)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \int_{0}^{1} \frac{(-1)^{n} x^{4 n}}{(2 n)!}=$ $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(4 n+1)(2 n)!}$.
(b) We see that $\int_{0}^{1} \cos ^{2}(x) \approx 1-\frac{1}{10}+\frac{1}{216}$, with error less than the absolute value of the next term of the series, $\frac{1}{9360}$. Our answer is an overestimate because we ended on a positive term.

