
Homework 7 Solutions

Math 131B-2

• For each of these, we apply the Root Test and then examine the endpoints of the in-
terval individually. The intervals of convergence are [4.5, 5.5], (0, 2), (−6, 4], and {3}.

• Let sn(x) = 1+x+x2 + · · ·+xn. Then on (−1, 1), sn is bounded, since |sn(x)| < n+1.
We know the sn converge pointwise to f(x) =

∑∞
n=1 x

n = 1
1−x . If the convergence were

uniform on (−1, 1), then we would expect the limit function f(x) to be bounded on
(−1, 1) as well, but it clearly isn’t.

• (9.33) (a) Consider the first derivative f ′(0) = limx→0
f(x)−f(0)

x−0 = limx→0
f(x)
x

. This
limit exists if and only if the corresponding limits from the right and left exist. Now
the limit from the left is limx→0−

0
x

= 0 and the limit from the right is

lim
x→0+

e−
1
x2

x
= lim

t→∞

t

et2

= lim
t→∞

1

2tet2

= 0

Here in the first step we have used the replacement t = 1
x
, and in the second we have

used L’Hospital’s Rule, since t, et
2 →∞ as t→∞. Therefore f ′(0) = 0, and in general

f ′(x) = −2
x3 e
− 1

x2 for x > 0 and f ′(x) = 0 for x ≤ 0.

Subsequent derivatives are similar: for every n, the function f (n)(x) is 0 when x ≤ 0

and a sum of terms of the form ce
− 1

x2

xk for some k when x > 0, so an argument sim-
ilar to the one above, with repeated applications of L’Hospital’s Rule, shows that
f (n+1)(0) = 0.

(b) By part (a), the Taylor series of f is identically 0. This certainly converges, but
since f(x) > 0 for x > 0, there is no interval on which the Taylor series represents f .

• (9.36) Since all an are nonnegative,
∑
an must diverge to ∞. Let M > 0. Then there

is some N such that for n ≥ N , the partial sum
∑

n=0Nan > 2M . Moreover, there is
some δ such that x ∈ (1 − δ, 1) implies that xN > 1

2
. Then for all x ∈ (1 − δ, 1), we

have
∑∞

n=0 anx
n =

∑
n=0Nanx

n +
∑∞

n=N+1 anx
n ≥

∑N
n=0 anx

n ≥
∑N

n=0 an ·
1
2
≥M . So

limx→1− anx
n =∞.



• (9.37) By 9.36, if
∑
an were to diverge, then

∑
anx

n would go to infinity as x → 1−.
As this is not the case, we must have

∑
an convergent. So by Abel’s theorem, since∑

an exists, we must have
∑
an = limx→1−

∑
anx

n = A.

• (9.21) When x 6= 1, notice that the series is the integral of
∑∞

n=0 x
2n − 1

2

∑∞
n=0 x

n,
which converges to 1

1−x2 − 1
2(1−x) = 1

2(1+x)
on (−1, 1). Ergo the original series converges

to 1
2

ln(1 + x) on [0, 1). When x = 1, the series is 1− 1
2

+ 1
3
− 1

4
+ · · · the alternating

harmonic series, which converges to ln(2), not 1
2

ln(2). Therefore the series converges
pointwise, but the limit cannot be continuous at x = 1, and therefore we conclude that
the convergence is not uniform. Why is this not a contradiction to Abel’s Theorem?
Because the series is not actually a power series as written. We would need to rear-
range the terms of the series to have a power series

∑
cnx

n, and in doing so we would
change the conditional convergence at the endpoint.

• Recall that B(M → S) (or any of the other notations mentioned in class) is the set of
bounded functions f : M → s and C(M → S) ⊂ B(M → S) is the subspace consisting
of bounded continuous functions.

– We check the axioms of a metric space. First, if f : M → S, notice that d∞(f, f) =
supx∈M dS(f(x), f(x)) = 0. If f, g : M → S such that f 6= g, there must be
some x0 ∈ M such that f(x0) 6= g(x0), ergo d∞(f, g) = supx∈M dS(f(x), g(x)) ≥
dS(f(x0), g(x0)) > 0. Second, d∞(f, g) = d∞(g, f) because dS is symmetric.

The interesting axiom is the triangle inequality. Let f, g, h : M → S be bounded,
and let a = d∞(f, g) = supx∈M dS(f(x), g(x)). Then given ε > 0, there is some
x0 ∈ S such that dS(f(x0), g(x0)) > a− ε. Therefore

a− ε < dS(f(x0), g(x0)

≤ dS(f(x0), h(x0)) + dS(h(x0), g(x0))

≤ sup
x∈M

dS(f(x), h(x)) + sup
x∈M

dS((h(x), g(x))

= d∞(f, h) + d∞(h, g)

Ergo d∞(f, g) − ε < d∞(f, h) + d∞(h, g) for all ε > 0. This implies that in fact
d∞(f, g)− ε ≤ d∞(f, h) + d∞(h, g).

– Let M = [0, 1] and S = R. Then if f(x) = 0, g(x) = M for M > 0, d∞(f, g) = M .
Therefore C(M → S) admits arbitrarily large distances and is not bounded. Since
all compact sets are bounded, C(M → S) is not compact.

– Let M = {0} and S = { 1
n

: n ∈ N}. Let fn(0) = 1
n
, which is trivially bounded

and continuous. Then d∞(fn, fm) = | 1
n
− 1

m
|, so the sequence {fn} is Cauchy.

However, it does not converge to any f : M → S.



• Double sums (a) Recall that a series of nonnegative terms bi either converges or diverges
to ∞, and in either case the expression

∑
bi makes sense. Similarly,

∑
i

∑
j aij either

converges or diverges to∞ if aij ≥ 0. If
∑

i

∑
j aij converges, then since |aij| = aij, by

the theorem proved in class,
∑

i

∑
j aij =

∑
j

∑
i aij. However, the opposite direction

is also true, so if either of
∑

i

∑
j aij or

∑
j

∑
i aij is finite they are equal, and otherwise

they are both +∞.

(b) If we switch the order of summation, we see that

∞∑
i=0

∞∑
j=0

1

(i+ 1)!

(
i

i+ 1

)j

=
∞∑
i=0

1

(i+ 1)!
(i+ 1)

=
∞∑
i=0

1

i!

= e

. By part (a), this is also
∑∞

j=0

∑∞
i=0 aij.

• Approximating integrals (a)
∫ 1

0
cos(x2) =

∫ 1

0

∑∞
n=0

(−1)n(x2)2n

(2n)!
=
∑∞

n=0

∫ 1

0
(−1)nx4n

(2n)!
=∑∞

n=0
(−1)n

(4n+1)(2n)!
.

(b) We see that
∫ 1

0
cos2(x) ≈ 1 − 1

10
+ 1

216
, with error less than the absolute value of

the next term of the series, 1
9360

. Our answer is an overestimate because we ended on
a positive term.


