Homework 7 Solutions

Math 131B-2

- For each of these, we apply the Root Test and then examine the endpoints of the interval individually. The intervals of convergence are [4.5, 5.5], (0, 2), (-6, 4], and $\{3\}$.
- Let $s_n(x) = 1 + x + x^2 + \dots + x^n$. Then on (-1, 1), s_n is bounded, since $|s_n(x)| < n+1$. We know the s_n converge pointwise to $f(x) = \sum_{n=1}^{\infty} x^n = \frac{1}{1-x}$. If the convergence were uniform on (-1, 1), then we would expect the limit function f(x) to be bounded on (-1, 1) as well, but it clearly isn't.
- (9.33) (a) Consider the first derivative $f'(0) = \lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \frac{f(x)}{x}$. This limit exists if and only if the corresponding limits from the right and left exist. Now the limit from the left is $\lim_{x\to 0^-} \frac{0}{x} = 0$ and the limit from the right is

$$\lim_{x \to 0^+} \frac{e^{-\frac{1}{x^2}}}{x} = \lim_{t \to \infty} \frac{t}{e^{t^2}}$$
$$= \lim_{t \to \infty} \frac{1}{2te^{t^2}}$$
$$= 0$$

Here in the first step we have used the replacement $t = \frac{1}{x}$, and in the second we have used L'Hospital's Rule, since $t, e^{t^2} \to \infty$ as $t \to \infty$. Therefore f'(0) = 0, and in general $f'(x) = \frac{-2}{x^3}e^{-\frac{1}{x^2}}$ for x > 0 and f'(x) = 0 for $x \le 0$.

Subsequent derivatives are similar: for every n, the function f(n)(x) is 0 when $x \leq 0$ and a sum of terms of the form $\frac{ce^{-\frac{1}{x^2}}}{x^k}$ for some k when x > 0, so an argument similar to the one above, with repeated applications of L'Hospital's Rule, shows that $f^{(n+1)}(0) = 0$.

(b) By part (a), the Taylor series of f is identically 0. This certainly converges, but since f(x) > 0 for x > 0, there is no interval on which the Taylor series represents f.

• (9.36) Since all a_n are nonnegative, $\sum a_n$ must diverge to ∞ . Let M > 0. Then there is some N such that for $n \ge N$, the partial sum $\sum_{n=0} Na_n > 2M$. Moreover, there is some δ such that $x \in (1 - \delta, 1)$ implies that $x^N > \frac{1}{2}$. Then for all $x \in (1 - \delta, 1)$, we have $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0} Na_n x^n + \sum_{n=N+1}^{\infty} a_n x^n \ge \sum_{n=0}^{N} a_n x^n \ge \sum_{n=0}^{N} a_n \cdot \frac{1}{2} \ge M$. So $\lim_{x \to 1^-} a_n x^n = \infty$.

- (9.37) By 9.36, if $\sum a_n$ were to diverge, then $\sum a_n x^n$ would go to infinity as $x \to 1^-$. As this is not the case, we must have $\sum a_n$ convergent. So by Abel's theorem, since $\sum a_n$ exists, we must have $\sum a_n = \lim_{x \to 1^-} \sum a_n x^n = A$.
- (9.21) When $x \neq 1$, notice that the series is the integral of $\sum_{n=0}^{\infty} x^{2n} \frac{1}{2} \sum_{n=0}^{\infty} x^n$, which converges to $\frac{1}{1-x^2} \frac{1}{2(1-x)} = \frac{1}{2(1+x)}$ on (-1, 1). Ergo the original series converges to $\frac{1}{2} \ln(1+x)$ on [0,1). When x = 1, the series is $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \cdots$ the alternating harmonic series, which converges to $\ln(2)$, not $\frac{1}{2} \ln(2)$. Therefore the series converges pointwise, but the limit cannot be continuous at x = 1, and therefore we conclude that the convergence is not uniform. Why is this not a contradiction to Abel's Theorem? Because the series is not actually a power series as written. We would need to rearrange the terms of the series to have a power series $\sum c_n x^n$, and in doing so we would change the conditional convergence at the endpoint.
- Recall that $B(M \to S)$ (or any of the other notations mentioned in class) is the set of bounded functions $f: M \to s$ and $C(M \to S) \subset B(M \to S)$ is the subspace consisting of bounded continuous functions.
 - We check the axioms of a metric space. First, if $f: M \to S$, notice that $d_{\infty}(f, f) = \sup_{x \in M} d_S(f(x), f(x)) = 0$. If $f, g: M \to S$ such that $f \neq g$, there must be some $x_0 \in M$ such that $f(x_0) \neq g(x_0)$, ergo $d_{\infty}(f, g) = \sup_{x \in M} d_S(f(x), g(x)) \geq d_S(f(x_0), g(x_0)) > 0$. Second, $d_{\infty}(f, g) = d_{\infty}(g, f)$ because d_S is symmetric. The interesting axiom is the triangle inequality. Let $f, g, h: M \to S$ be bounded, and let $a = d_{\infty}(f, g) = \sup_{x \in M} d_S(f(x), g(x))$. Then given $\epsilon > 0$, there is some $x_0 \in S$ such that $d_S(f(x_0), g(x_0)) > a \epsilon$. Therefore

$$\begin{aligned} a - \epsilon &< d_S(f(x_0), g(x_0)) \\ &\leq d_S(f(x_0), h(x_0)) + d_S(h(x_0), g(x_0))) \\ &\leq \sup_{x \in M} d_S(f(x), h(x)) + \sup_{x \in M} d_S((h(x), g(x))) \\ &= d_\infty(f, h) + d_\infty(h, g) \end{aligned}$$

Ergo $d_{\infty}(f,g) - \epsilon < d_{\infty}(f,h) + d_{\infty}(h,g)$ for all $\epsilon > 0$. This implies that in fact $d_{\infty}(f,g) - \epsilon \leq d_{\infty}(f,h) + d_{\infty}(h,g)$.

- Let M = [0, 1] and $S = \mathbb{R}$. Then if f(x) = 0, g(x) = M for M > 0, $d_{\infty}(f, g) = M$. Therefore $C(M \to S)$ admits arbitrarily large distances and is not bounded. Since all compact sets are bounded, $C(M \to S)$ is not compact.
- Let $M = \{0\}$ and $S = \{\frac{1}{n} : n \in \mathbb{N}\}$. Let $f_n(0) = \frac{1}{n}$, which is trivially bounded and continuous. Then $d_{\infty}(f_n, f_m) = |\frac{1}{n} - \frac{1}{m}|$, so the sequence $\{f_n\}$ is Cauchy. However, it does not converge to any $f : M \to S$.

- Double sums (a) Recall that a series of nonnegative terms b_i either converges or diverges to ∞ , and in either case the expression $\sum b_i$ makes sense. Similarly, $\sum_i \sum_j a_{ij}$ either converges or diverges to ∞ if $a_{ij} \ge 0$. If $\sum_i \sum_j a_{ij}$ converges, then since $|a_{ij}| = a_i j$, by the theorem proved in class, $\sum_i \sum_j a_{ij} = \sum_j \sum_i a_{ij}$. However, the opposite direction is also true, so if either of $\sum_i \sum_j a_{ij}$ or $\sum_j \sum_i a_{ij}$ is finite they are equal, and otherwise they are both $+\infty$.
 - (b) If we switch the order of summation, we see that

$$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{1}{(i+1)!} \left(\frac{i}{i+1}\right)^j = \sum_{i=0}^{\infty} \frac{1}{(i+1)!} (i+1)$$
$$= \sum_{i=0}^{\infty} \frac{1}{i!}$$
$$= e$$

- . By part (a), this is also $\sum_{j=0}^{\infty} \sum_{i=0}^{\infty} a_{ij}$.
- Approximating integrals (a) $\int_0^1 \cos(x^2) = \int_0^1 \sum_{n=0}^\infty \frac{(-1)^n (x^2)^{2n}}{(2n)!} = \sum_{n=0}^\infty \int_0^1 \frac{(-1)^n x^{4n}}{(2n)!} = \sum_{n=0}^\infty \frac{(-1)^n}{(4n+1)(2n)!}$.

(b) We see that $\int_0^1 \cos^2(x) \approx 1 - \frac{1}{10} + \frac{1}{216}$, with error less than the absolute value of the next term of the series, $\frac{1}{9360}$. Our answer is an overestimate because we ended on a positive term.